
Comparison of the Frontier Distributed Database Caching
System to NoSQL Databases

Dave Dykstra
Fermilab, Batavia, IL, USA

Email: dwd@fnal.gov

Abstract. One of the main attractions of non-relational "NoSQL" databases is their
ability to scale to large numbers of readers, including readers spread over a wide area.
The Frontier distributed database caching system, used in production by the Large
Hadron Collider CMS and ATLAS detector projects for Conditions data, is based on
traditional SQL databases but also adds high scalability and the ability to be
distributed over a wide-area for an important subset of applications. This paper
compares the major characteristics of the two different approaches and identifies the
criteria for choosing which approach to prefer over the other. It also compares in
some detail the NoSQL databases used by CMS and ATLAS: MongoDB, CouchDB,
HBase, and Cassandra.

1. Introduction
This paper compares the Frontier Distributed Database Caching System [1] to several “NoSQL”
Database Management Systems. The goal of the paper is to increase familiarity with all of them to
help the right tool to be chosen for each application.

Experience with using these systems is described from the two largest detector experiments from
the Large Hadron Collider (LHC): CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC
ApparatuS). The applications in both experiments that use the Frontier system load what is called
Conditions data, which are primarily detector alignments and calibrations that need to be loaded to
every processor that examines particle collision events.

Section 2 describes common characteristics of NoSQL databases. Section 3 introduces a common
effect that leads to typical requirements on distributed client-server systems, called the Slashdot Effect,
which is background for the remaining sections. Section 4 describes the characteristics of the Frontier
Distributed Caching System. Section 5 gives examples of Frontier deployments for the CMS
experiment's Conditions data, both Offline and Online. Section 6 compares Frontier to NoSQL in
general, and Section 7 compares Frontier to the specific NoSQL database management systems
MongoDB, CouchDB, HBase, and Cassandra.

2. Common Characteristics of NoSQL Databases
The name “NoSQL” is used to refer to a large variety of Database Management Systems (DBMS) with
many different characteristics. This section describes some of the most common characteristics.

2.1. Non-relational

mailto:dwd@fnal.gov

The primary unifying characteristic is something they are not: they are not traditional Relational
Database Management Systems (RDBMS). RDBMS store data in a structured tables, where rows
each have predefined column names and types. The predefined structures are also called “schemas.”
 NoSQL systems, on the other hand, generally allow more flexibility in the structure of data. They
usually have keys which can return any arbitrary data for different values of a key, including possibly
other keys that are nested. As long as the application program knows how to handle the flexible
results, the database doesn't care. Many of the systems allow also specifying some structure to the
data in order to improve performance with indexing.

As a result of the flexible structure, most of the NoSQL systems then do not support the standard
RDBMS Structured Query Language, or SQL. Some of them do support it for compatibility with
existing applications, however, since the row/column structure is a subset of the more general
key/value structure.

2.2. Distributed
One of the most attractive characteristics of popular NoSQL systems is that they are able to distribute
their data across a large number of commodity computers, both at local and remote locations.
Through that they achieve both fault tolerance and high scalability. This enables them to reliably
scale to large numbers of read operations and, in many cases, also of write operations.

2.3. Eventual Consistency
In order to perform well in a distributed environment, most (but not all) of the NoSQL systems give up
atomic operations in favor of eventual consistency. That is, instead of providing ACID (Atomic,
Consistent, Isolated and Durable) transactions, they provide BASE (Basic-Availability, Soft-State, and
Eventual Consistency). Whether or not this is acceptable depends on the application; many
applications do fine with BASE but others need ACID [2].

3. The Slashdot Effect
A frequent requirement on client-server applications is the ability to handle reading the same data from
a very large number of different clients. The “Slashdot Effect,” also known as “slashdotting,” occurs
when a popular website includes a hyperlink to a much smaller website and many people click on the
link at around the same time and overwhelm relatively small web servers. The term was coined in the
early days of the technical news aggregator “slashdot.org” after it became popular [3].

Companies typically handle the Slashdot Effect for their web service with a Content Delivery
Network (CDN), either by contract or by owning their own. A CDN provides multiple servers around
the world that either cache web sites or contain copies of them. That way the client requests get
distributed among a large number of servers and no one server becomes overloaded.

Some database applications have a similar requirement to handle many readers of the same data at
about the same time.

4. Frontier Characteristics
The Frontier Distributed Database Caching system (hereafter referred to as Frontier or Frontier/Squid)
was designed to handle the Slashdot Effect for applications that use Relational Database Management
Systems; that is, those applications that have many readers of the same data, and relatively few
writers. The following are some of its characteristics.

• It distributes read-only SQL queries; it is not a NoSQL system. That brings the advantages of
using long-supported and well-understood RDBMS as the backend database, with all its
stability, strong support, and existing software.

• Its protocol follows the REST (REpresentational State Transfer) specification of HTTP, so it is
easily cacheable with standard web proxies [4]. The current deployments use the popular open
source caching web proxy called Squid [5].

• Squids are deployed within the Local Area Networks of the clients. This makes an ideal Content
Delivery Network because most of the traffic goes on the high capacity, low latency LANs.
This is an ideal CDN also because web proxy caches are practically maintenance-free; once
they are configured and started, they require very little intervention.

• When there are simultaneous requests for the same data using the same web proxy cache, Squid
can collapse them into a single request to the upstream server (if the non-default option
collapsed_forwarding is turned on). If the requests for the same data come close together but
not at the same time, the data is served from the local cache and the upstream server isn't
contacted at all.

• When there are more simultaneous different requests than a small configurable number, those
requests are queued at the Frontier servers. This slows down the clients that are waiting for the
data but avoids overloading the database servers. (The queue sizes are also limited and in CMS
the operators are notified when one of them is nearly full [6]. In practice the queueing is only
used for short periods of time each day).

5. Frontier/Squid Deployment Examples
The current version of the Frontier/Squid system is deployed in production in three High Energy
Physics applications at the Large Hadron Collider. They all distribute “conditions” data, which are
mainly detector alignments and calibrations. All the worldwide jobs that are processing particle
collision events need to read the conditions from the detectors which were valid at the time of the
collisions. Since related events tend to be processed close together, usually there are many jobs
reading the same conditions data at about the same time. The three deployments are for CMS Offline,
CMS Online, and ATLAS Offline. The remainder of this section will take a closer look at the first two
and at the limits of the components of the Frontier/Squid system.

5.1. Frontier/Squid Deployment Example: CMS Offline Conditions
Figure 1 shows the architecture of the CMS Offline Conditions deployment of Frontier/Squid.

Figure 1: CMS Offline Conditions Frontier/Squid deployment architecture

 RDBMS

Offline
Frontier
Servers

Tomcat+
servlet+
Squid

Tier0
Squids

 Wide
 Area
 Network

 Wide
 Area
 Network

Tier0
Farm

Tier1,2,3
Squids

Tier1,2,3
Squids

TierN
Farm

TierN
Farm

In this deployment, a highly-available Oracle RDBMS and 3 Frontier servers are at CERN. Each
Frontier server runs an open source java Tomcat [7] process that contains Frontier servlets. Each
servlet reads from the RDBMS using SQL and converts the responses into HTTP/REST cacheable
responses. On the same server machine there is a reverse-proxy Squid which caches the responses.
Then at each site, both locally at the CERN Tier 0 site and at each of the approximately 100 Tier 1,
Tier 2, and Tier 3 sites there are more Squids to cache the responses locally. CMS software running on
each of the worker nodes in the compute farms, which include a frontier client library, converts the
responses back from HTTP to SQL responses. Note that the only custom software in the
Frontier/Squid system is the servlet in Tomcat and the frontier client library. Currently the only CMS
Offline Frontier servers are at CERN, but CMS is working on replicating the database and servers at
another site for increased availability.

This system handles an average of about 500,000 total requests per minute total worldwide by all
of the approximately 100 distributed Squids, and an average of 500 Megabytes per second. That may
not seem like very much, but because conditions are mostly loaded near the beginning of jobs, and
related jobs tend to start together at sites, peaks on individual squids are often significantly higher than
their average, by a factor of 5 or more. (Also, these numbers don't include Tier 3 sites because
statistics from them are not collected together, but they tend to be relatively small anyway.)

By contrast, the 3 central Frontier servers at CERN see a total average of 4,000 requests per minute
and deliver an average of 0.5 Megabytes per second. That is a factor of 125 improvement on requests
and a factor of 1000 improvement on bandwidth. The difference in improvement is primarily because
of the If-Modified-Since caching policy that is used, where a majority of the time only small
timestamp checks need to be done and then cached items can be reused if nothing has changed. A
majority of those requests are satisfied by the Frontier servlet without having to contact the database
[8].

5.2. Frontier/Squid Deployment Example: CMS Online Conditions
Figure 2 shows the architecture of the CMS Online Conditions deployment of Frontier/Squid.

Figure 2: CMS Online Conditions Frontier/Squid deployment architecture

The configuration of the Squids in the CMS Online deployment is very different because the
requirements are very different. In this each worker node each has its own Squid, arranged in a
hierarchy where each Squid feeds up to 4 others. This is needed because all of the 1400 nodes have to
be loaded at the same time with about 100MB of data as quickly as possible, and that would
overwhelm a small number of servers; it would be an extreme Slashdot Effect. This deployment
demonstrates the flexible power of having a protocol that can make use of proxies; as many as are
needed can be easily inserted for more bandwidth.

 RDBMS

Online
Frontier
Servers

Tomcat
+servlet
+squid

5.3. Limits of Frontier Tomcat servlets and Squids
In general the limits on Frontier Tomcat servlets and Squids, at least with applications similar to CMS
Conditions, are the network capacities of their host machines, not the CPU or disk.

Frontier Tomcat servlets were recently measured on a 3-year old 8-core machine (with Xeon L5420
cpus at 2.5Ghz) to be able to easily saturate a 1 Gigabit network out when reading from an Oracle
database without compressing the result. With gzip compression of the output, however, the
maximum output rate drops to 25 Megabytes per second while fully utilizing all of the 8 cpu cores.
On the other hand, it saves much bandwidth later in the caches. In production, demand on the CMS
Offline Frontier servers is so light that even with gzip compression the servers run on 2-core Virtual
Machines and are still always lightly loaded.

Squid was measured two years ago on a machine that was new at the time (with Xeon E5430 cpus at
2.66Ghz) to saturate two bonded 1 Gigabit network connections with one single-thread Squid. It was
also measured recently on a modern machine (with Opteron 6140 cpus) with a 10 Gigabit network
connection to send up to 7 Gigabits with a single-thread Squid. We are still using a single-threaded
Squid2 version because the multi-threaded Squid3 does not yet properly implement If-Modified-Since
(Squid3 was a total rewrite in a different programming language). If that does not get fixed soon, we
can instead run two Squid2s listening on the same port and in that way saturate a 10 Gigabit network,
at a cost of being unable to share the disk cache. Since Squid disk caches for this application do very
well with 100GB of space, doubling that space is not difficult.

6. Comparison between Frontier and NoSQL in general
Now that Frontier has been examined in detail and NoSQL in general has been introduced, the two
systems can be compared.

6.1. Database structure
Frontier uses the Relational DBMS row/column structure which has the advantages of being able to
use a database with long experience and support. NoSQL databases use nested key/value structure
which gives flexibility of data layout.

6.2. Consistency
Both Frontier and NoSQL databases provide eventual consistency in the data. In Frontier's case
writers always see a consistent database, but readers don't always see it because of varying cache
delays. Applications have to be tolerant of delays for both Frontier and NoSQL.

6.3. Write model
Frontier has only central writing into the Relational database but NoSQL databases generally support
distributed writing. Depending on the application that may be important.

6.4. Read model
Frontier supports best many readers of the same data items. NoSQL databases in general support the
simultaneous reading of many different data items better than Frontier does, because they can have the
data replicated at more servers.

6.5. Data model
In the data distribution model of Frontier, the data is stored centrally and then cached on demand in the
distributed elements. In NoSQL databases the data is generally sent ahead of time to the distributed
elements, with copies of the data stored there permanently. The Frontier system can have a small
number of replicas of all the data distributed for reliability as well.

6.6. Distributed elements
The distributed elements in the Frontier system are general purpose web proxy caches that can also be
used for other applications. With NoSQL databases the distributed elements are special purpose for
only that database.

Table 1 summarizes the comparisons.

Table 1: Comparisons between Frontier and NoSQL in general

Frontier NoSQL in general

DB structure Row/column Nested key/value

Consistency ACID DB, eventual read Eventual

Write model Central writing Distributed writing

Read model Many readers same data Read many different data

Data model
Central data,

cache on demand
Distributed data, copies

Distributed
elements

General purpose Special purpose

7. Comparisons With Specific NoSQL DBMS
In this section specific NoSQL systems will be reviewed and compared. The chosen systems are all
currently used in production in some capacity for either the CMS or ATLAS experiments. They are
MongoDB, CouchDB, Hadoop HBase, and Cassandra.

7.1. MongoDB
The name for MongoDB came from “mongo” for “humongous”
because it was intended to support big databases cheaply.
MongoDB stores binary JavaScript Object Notation (JSON).
JSON is a very common, compact method of storing and
exchanging arbitrarily structured data.

MongoDB is more like a standard RDBMS than the other NoSQL systems considered in this paper.
It allows any field to be of predefined type and memory-indexed for performance. It also has very
flexible queries similar to SQL: queries by fields, ranges, and regular expressions. Only one server is
allowed to write any particular data item; a few read-only copies on other servers can be stored and
any one of them can take over as the master, if the master goes down. Scaling is then done by
sharding, where different data items are distributed among multiple servers. Note that this does not do
well with the Slashdot Effect because each data item is never on more than a small number of servers.

CMS uses MongoDB in production for its Data Aggregation Service [9]. They needed the dynamic
structure and liked MongoDB's other features. It is a very small installation, however, on only one
server.

MongoDB supports MapReduce, where user-defined processing can be distributed across the
servers that have replicas of the data. An ATLAS evaluation, however, found that it didn't work very
well; that feature is reported to work better in the current version 2 of MongoDB [10].

7.2. CouchDB
CouchDB, like MongoDB, stores JSON objects. It has the very
interesting characteristic of using a REST-compliant interface for
reading and writing the database. This means that, like Frontier, it
can be deployed with web proxies wherever the application
requires it, thus handling the Slashdot Effect well. The RESTful
interface also makes it easy to insert standard proxies for other
purposes including supporting a large variety of authentication
methods.

Once it is configured, CouchDB automatically replicates all the data to all servers. This can be
very useful when the amount of data is relatively small but is impractical for very large databases and
a large number of replicas because of the expense of the disk space. In addition to making the data
available to read on all servers, CouchDB supports simultaneous writing on all the replicas. It also
ensures that all writes are atomic, that all readers see consistent views, and that writing doesn't block
reading; that is, it supports ACID transactions. That is accomplished by using Multi-Version
Concurrency Control (MVCC) which is a common feature of relational databases but not very
common in NoSQL databases. Write conflicts have to be resolved by the application, however. Note
that even though all readers always see internally consistent views, that doesn't necessarily mean that
all readers will see the exact same view at the same time, because it can take some time for a write
transaction to propagate to all the replicas.

Queries are done very differently in CouchDB than other DBMS: the user defines “views” using
JavaScript functions that create additional URLs to read later. The programming paradigm for those
functions is MapReduce, but the processing of the functions is not distributed to multiple servers so it
doesn't get the performance boost of other systems with MapReduce (in particular see Hadoop HBase
in the next section).

CMS uses CouchDB in production for several functions in its Workload Management systems [9].
The installation is larger than the MongoDB installation, but still not very large: it has 3 replicas of a
CouchDB database at CERN and 4 replicas of the same database at Fermilab.

7.3. Hadoop HBase
Hadoop HBase is a database implementation that is
built on the Hadoop Distributed FileSystem
(HDFS). HDFS is designed for large clusters of
commodity computers and automatically distributes
file blocks and replicates them across the cluster. If
any replica is lost, HDFS automatically replaces it from other replicas. So it is very reliable and
works well with large amounts of data. On the other hand, it doesn't scale down very well to small
installations. Quite a few of the distributed sites in the Worldwide LHC Computing Grid (WLCG) use
HDFS to store data with good results. HDFS has a tunable replication level to control the number of
copies that are kept for each data block.

HBase is modeled after Google's BigTable, which is designed to handle data structured with
billions of rows and millions of columns. It is especially good for search engine-like applications.
HBase is very good at distributed MapReduce, where processing is split up and mapped to run in
parallel on the computers that contain the data, and then the results are reduced into a combined
answer. It does not supply ACID guarantees for every kind of database interaction, however, just
some of them.

HBase also has an SQL compatibility interface via an add-on called Hive. So this “NoSQL”
database does support SQL. It also has a RESTful interface add-on called Stargate; the native
interface is Java. So if the RESTful interface is used along with distributed proxy caches it could also
do well with the Slashdot Effect.

 HBase is used in production by ATLAS in its Distributed Data Manager called DQ2 (Don Quixote
2), for both log analysis and accounting on a 12-node cluster [11]. When ATLAS first tried it for
doing their accounting summary, they found it was 8 to 20 times faster than on the shared Oracle
system they had, depending on the HDFS replication level. They have since improved the accounting
summary mechanism for both systems and found that for small examples the performance is similar
on similar hardware. They believe the HBase system, however, will be able to scale much better.

HBase has been recognized by the WLCG Database Technical Evolution Group as having the
greatest potential impact on the LHC experiments out of all NoSQL technologies. The CERN IT
organization is setting up a cluster to try it.

7.4. Cassandra
Like HBase, Cassandra is also modeled after Google BigTable. It is
especially good at distribution over widely separated locations. All
nodes in the system are masters, and control is decentralized for good
fault tolerance. The system dynamically reconfigures itself as servers
are added or removed, with no downtime overall.

The keys and values in Cassandra can be any arbitrary data. It has a concept of “column families”
which are used like indexes in relational databases. It has a tunable replication level like HBase. It
has tunable in-memory caching of recently read data, on the nodes to which the data has been
replicated. It also has tunable consistency, from always consistent to eventually consistent. It supports
MapReduce through Hadoop components.

Cassandra was originally written by Facebook for use with their Inbox search feature. They
abandoned it in late 2010, however, and now use HBase instead.

Cassandra is used in production by ATLAS PanDa monitoring [12]. They chose to host it at BNL
on only 3 nodes that were quite high-powered: each node has 24 cores and 1 Terabyte of RAID0
Solid-State Disks (SSDs). They could perhaps have achieved similar performance out of Oracle on
similar hardware, but since their Oracle installation supports a much larger application base it wouldn't
have been economical to upgrade it all.

7.5. Comparison summary

Table 2: Summary comparison of specific NoSQL DBs and Frontier characteristics

MongoDB CouchDB HBase Cassandra Frontier

Stored data format JSON JSON Arbitrary Arbitrary SQL types
Flexible queries Yes No No No Yes
Distributed write No Yes No Yes No
Handles Slashdot

Effect well No Yes, best
w/squid

If scaled
sufficiently

If scaled
sufficiently Yes

Does well with many
reads of different data Yes Yes Yes Yes No

RESTful interface No Yes Add-on No Yes

Consistency Eventual ACID DB,
eventual read Mixed Tunable ACID DB,

eventual read
Distributed MapReduce No No Yes Add-on No
Replication Few copies Everything Tunable Tunable Caching

Table 2 shows a summary comparison of major characteristics between the 4 specific NoSQL database
systems and Frontier. The entries in the table summarize the points discussed in the sections above.

8. Conclusions
NoSQL Database Management Systems have a wide variety of characteristics. Most of them are
highly scalable, which is one of their major attractions.

Frontier with distributed Squid servers easily and efficiently add some of the same scalability to
relational databases for applications that have a very large number of readers of the same data. It also
enables the clients to be geographically distant and still perform well. On the other hand, it requires
the application to be able to tolerate eventual consistency.

Of the 4 NoSQL systems considered, CouchDB is the one that can scale the easiest for the Slashdot
Effect because its native REST-compliant interface enables it to be cached by HTTP proxies.

Of all current popular NoSQL systems, Hadoop HBase appears to have the most potential for
scaling up to handle very large applications.

There are applications in High Energy Physics that make good use of the strengths of many
different Database Management Systems.

9. Acknowledgements
Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy. Thank you to Steve Foulkes, Gabriele Garzoglio,
Valentin Kuznetsov, Mario Lassnig, Maxim Potekhin, and Eric Vaandering for supplying comments on
a draft of this paper and/or for providing information on existing use of NoSQL databases in the LHC
experiments.

References
[1] Dykstra D and Lueking L 2010 Greatly improved cache update times for conditions data with

Frontier/Squid J. Phys.: Conf. Ser. 219 072034
[2] Pritchett D 2008 BASE: An Acid Alternative ACM Queue Magazine vol 6 May/June issue 3
[3] Adler S 1999 “The Slashdot Effect: An Analysis of Three Internet Publications” Linux Gazette

March issue 38
[4] Dykstra D 2011 Scaling HEP to Web Size with RESTful Protocols: The Frontier Example J.

Phys.: Conf. Ser. 331 042008
[5] Squid: http://www.squid-cache.org Last accessed on 21 May 2012
[6] Blumenfeld B, Dykstra D, Kreuzer P, Du R, and Wang W 2012 Operational Experience with the

Frontier System in CMS CHEP 2012, New York, NY, May 2012
[7] Apache Tomcat: http://tomcat.apache.org Last accessed on 21 May 2012
[8] Dykstra D and Lueking L 2010 Greatly improved cache update times for conditions data with

Frontier/Squid J. Phys.: Conf. Ser. 219 072034
[9] Kuznetzov V, Evans D, and Metson S 2012 Life in extra dimensions of database world or

penetration of NoSQL in HEP community CHEP 2012, New York, NY, May 2012
[10] Lassnig M et. al. 2012 Structured storage in ATLAS Distributed Data Management: use cases

and experiences CHEP 2012, New York, NY, May 2012
[11] Lassnig M, Garonne V, Dimitrov G, and Canali L 2012 ATLAS Data Management Accounting

with Hadoop Pig and HBase CHEP 2012, New York, NY, May 2012
[12] Ito H, Potekhin M, and Wenaus T 2012 Development of noSQL data storage for the ATLAS

PanDA Monitoring System CHEP 2012, New York, NY, May 2012

